JGOFS Accomplishments and New Challenges

ACKNOWLEDGMENTS

- Local organizing committee: Mark, Mardi, Ken, Duck, Liz, Roger and Mary
- JGOFS planners, field participants and data synthesizers/modelers: 1982-present
- National and international funding agencies who provided the support to make JGOFS happen!

ACKNOWLEDGMENTS

• Mike Fasham for his heroic efforts following the Bergen JGOFS-OSC in 2000

ACKNOWLEDGMENTS

 Debbie Steinberg, Chair, and her Scientific Program Steering Committee

All aboard!

Nina's Dandy

"The ship for all reasons, and the ship for all seasons"

Potomac River luncheon cruise departs today at 1300 hrs!!

PREFACE

- Undersampling is a fact of life in oceanography: Our understanding is limited by lack of field observations (ignorance >> knowledge)
- Ocean biogeochemistry and metabolism are timevariable, climate-sensitive, non steady-state processes that must be studied as such
- Microbial community structure matters variations thereof control C-N-P biodynamics and carbon sequestration in the sea

OUTLINE

- What was achieved by JGOFS?
- Case study: Hawaii Ocean Time-series (HOT)
- Where do we go from here?

WHAT IS JGOFS? (http://www.uib.no/jgofs)

- International, multi-disciplinary programme with participants in more than 20 countries
- Launched in Paris in Feb 1987 under auspices of SCOR-ICSU
- In 1989 became a core project of IGBP
- Field work began in Oct 1988 with establishment of two open ocean time-series programmes (HOT/BATS)

JGOFS Joy of **J**oint Going Global Ocean Out Flux From **S**tudy Shore

"When men (and women) come to like a sea-life, They are not fit to live on land" Samuel Johnson (1709-1784)

JGOFS "MARCHING ORDERS" REDUCING UNCERTAINTIES

- To determine and understand on a global scale the processes controlling time-varying fluxes of carbon and associated biogenic elements
- To develop a capability to predict the response of oceanic biogeochemical processes to natural and anthropogenic perturbations

i.e., to better understand marine microbial ecology!

JGOFS CHRONOLOGY

- The JGOFS foundation key biogeochemical contributions (pre-1987)
- Knowledge gained during the JGOFS-era (circa 1987-2003)
- Future "JGOFS-like" research prospectus (post-2003)

FOUR DECADES OF "JGOFS" RESEARCH IN THE PRE-JGOFS ERA

Exploration --- Discovery --- Synthesis & Hypothesis Testing --- More Exploration

PARADIGMS CIRCA 1987

- Climax community: time/space invariant
- Fixed C-N-P stoichiometry of life
- New (NO₃⁻) vs. regenerated (NH₄⁺) production and NO₃-based export models (N-limitation)
- Fixed subeuphotic zone remineralization
- Net autotrophic metabolic balance
- Well characterized and easily modeled

NOVEL MICROBES, NOVEL ECOLOGIES

- 1988: *Prochlorococcus* (Chisholm)
- 1992: pelagic Archaea (DeLong/Fuhrman)
- 2000: rhodopsin-containing photoheterotrophs (Béjà and DeLong)
- 2000: rediscovery of AAPs (Kolber et al.)
- 2001: novel N₂-fixers (Zehr et al.)
- 2001: novel picoeukaryotes (Vaulot et al.)
- 2002: SAR 11 (Rappé and Giovannoni)
- 2003 and beyond: ??

Pennycoccus chisholmi

Prochlorococcus marinus – MIT 9313 (Ting et al. 1999)

MICROBIAL GENOME SEQUENCING: A "PROGRESS REPORT"

- 1st complete genome 1995; by the end of 2003, >300 selected genomes will be available
- 30-50% of putative genes have no known function (metabolic regulation/ecology?)
- Horizontal (lateral) gene flow is commonplace so "species" concept is questionable

NOT EVEN THE TIP OF THE ICEBERG!

Knowns

- Less than 1% of species
- Only 1 "model" system

Unknowns

- Novel microbes and habitats
- Novel physiology/ biochemistry

SHIFTING PARADIGMS

- A diverse, uncharacterized "microbial soup"
- Novel carbon and energy flow pathways: transient net metabolic state
- Dynamic selection pressures and temporal shifts in community structure
- Flexible C-N-P stoichiometry
- N₂-based new production and P/Fe control of ecosystem dynamics

- International and transdisciplinary partnerships built on trust and respect
- Joint field campaigns to address "big" questions in marine biogeochemistry
- Free and open data and idea sharing policies

Biogeochimistes sans frontières

Biogeochemists without borders

Important progress on biogeochemical reference materials has been made during JGOFS era, especially:

- DIC-alk (A. Dickson)
- DOC (D. Hansell)
- DON (J. Sharp)
- Pigments
 - (R. Bidigare et al.)

J G \longleftrightarrow F S JOINT GLOBAL OCEAN FLUX STUDY A Core Project of the International Geosphere-Biosphere Programme

JGOFS REPORT No. 30

JOINT GLOBAL OCEAN FLUX STUDY:

PUBLICATIONS 1988-1999

JANUARY 2000

SCIENTIFIC COMMITTEE ON OCEANIC RESEARCH INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS

JGOFS: To create and disseminate knowledge

- From A to Z Abraham (1998) to Zuddas and Mucci (1998)
- 2660 publications
 1988 1999
- Several key syntheses, with more to come!

TO CREATE AND DISSEMINATE KNOWLEDGE

122

How do we get from the marine food web to a global assessment of CO₂ flux???

With great difficulty!

CONTROLS ON ECOSYSTEM DYNAMICS

- *Physical*: turbulence, light, temperature
- *Chemical*: nutrient loading, trace element availability
- *Biological*: community composition, food web structure, N₂-fixation
- Climate and Human Influences: ENSO, PDO-NAO, land use, population, desertsdust

BARRIERS TO LINKING CLIMATE CHANGE TO OCEAN BIOLOGY

- Natural habitat variability
- Lack of consistent, long-term ocean observations
- Changing bio-ocean paradigms
- Other (\$\$, motivation, human resources, technology)

U.S. Joint Global Ocean Flux Study

JGOFS

- Transdisciplinary
- C-N-P cycles
- Process studies, time-series, data assimilation and modeling
- Hypothesis generation and testing
- Education and training

OCEAN TIME-SERIES PROGRAMS

- Description of large ecosystems and how they function using a multidisciplinary approach
- Detection of low frequency temporal variability in physical and biogeochemical processes
- Determination of natural dynamics resulting from complex biological, chemical and physical effects
- Climate-Ecosystem linkages

- Variable physical forces at work
- Biological effects

 have thresholds,
 complex
 feedbacks and
 other interactions
- Look for changes in emergent ecosystem properties

CLIMAX COMMUNITY THEORY (Clements 1916, Whittaker 1953)

- Succession orderly process of community development involving changes in community structure, function and dynamics - reasonably directional and predictable
- Driven by changes in physical environment i.e., climate
- Culminates in a stable, terminal ecosystem the Climax community - maximum utilization of resources
- Under ruling climate, the community does not change and conversely, climate change will drive ecosystem change

NUTRIENT DYNAMICS IN THE NORTH PACIFIC SUBTROPICAL GYRE

- Approximately monthly cruises to Sta. ALOHA (22°45'N, 158°W) since Oct 1988
- Core physical, chemical and biological measurements (e.g., CTD, DIC-alk, nutrients, DOC-N-P, POC-N-P) and biooptics
- Rate measurements (e.g., primary production and particulate matter export)
- Zooplankton
- Satellites and moorings

THE TWO FACES OF THE NORTH PACIFIC GYRE

Primary Production Climatology

- 111 depth profiles (1989-2002)
- < 200 to > 1000 mg C m⁻² d⁻¹ (mean = 510)

 well resolved seasonal cycle, but low predictive value

HOT BIOGEOCHEMICAL ENIGMAS: SELECTED EXAMPLES

- Variable strength of carbon dioxide sink
- Variable primary production and export
- Changes in community structure, especially Prokaryote:Eukaryote ratio
- Role of N₂ fixation and possible Fe (dust) control of carbon sequestration

- The Subtropical North Pacific habitat is a net sink for atmospheric carbon dioxide
- The strength of the net sink (△pCO₂) is seasonally variable and, perhaps, getting weaker with time over the past decade
- These variations may be the direct result of climate (e.g., E vs. P) or climate effects on the biological pump

MICROBIOLOGICAL N₂ FIXATION

- Discovered in late 19th century in soil bacteria
- H. B. Bigelow (1931): "The possibility that socalled N₂ fixers may also fertilize seawater must be taken into account"
- R. Dugdale discovered N₂ fixation in Sargasso Sea in 1961
- Process was considered to be negligible in pre-JGOFS era, but significant during JGOFS

NUTRIENT DYNAMICS IN THE SUBTROPICAL NORTH PACIFIC OCEAN

- *Past Dogma:* N limits biomass accumulation and production rates
- *Contrariant Viewpoint:* P or some trace nutrient limits biomass accumulation and production rates
- *New Hypothesis:* There is a systematic, temporal alternation between N and P/Fe control of plankton processes, resulting from complex interactions between the ocean and the atmosphere, that may have important consequences for biogeochemical cycling rates and processes in the sea

ALTERNATING ECOSYSTEM STATES OF THE NORTH PACIFIC GYRE

EVIDENCE FOR N₂ FIXATION

- Inability to balance N-cycle
- Presence of putative N₂ fixing microbes
- Altered DOM/POM/export stoichiometry
- Direct field measurements of N₂ fixation
- Natural ¹⁵N isotope balance
- P pool drawdown over last decade
- DIC pool drawdown each summer

DIVERSITY OF N₂ FIXERS AT STA. ALOHA

Picoplankton	Trichodesmium	Diatoms/ <i>Richelia</i>
- small (<2 μm)	- large (>20 µm)	- large (>20 µm)
- "background" population	- bloom forming	- bloom forming
- dispersed	- floaters/migrators	- sinkers/migrators
- consumed by protozoans	- not readily consumed	- consumed by zooplankton
- high turnover / low export	- low turnover / low export	- variable turnover / high export

The Rogues Gallery

Pico

Tricho

Diatomic diatom

EVIDENCE FOR N₂ FIXATION

- Inability to balance N-cycle
- Presence of putative N₂ fixing microbes
- Altered DOM/POM/export stoichiometry
- Direct field measurements of N₂ fixation
- Natural ¹⁵N isotope balance
- P pool drawdown over last decade
- DIC pool drawdown each summer

- Approximately monthly collections (48-60 hr per month)
- 150 m reference depth (1988-present)
- 300, 500 m reference depths (1988-1995)

δ¹⁵N OF NEW N SOURCES AT STATION ALOHA

$\delta^{15}N(N_2 \text{ Fixation}) \approx 0\%$

Slight equilibrium fractionation during dissolution is roughly counteracted by slight kinetic fractionation during fixation

δ^{15} N (NO₃⁻ uptake) $\approx 6.5 \%$

Approximate deepwater value – no fractionation occurs during uptake because reaction is taken to completion; i.e., NO_3^- is taken up as fast as it is delivered

Dore et al. (2002), L&O, 47: 1595-1607

N₂ FIXATION AT STATION ALOHA (1990-2000)

- N₂ accounts for 47±9% of "new" N
- Large interannual variations:
 36% in 1993 vs. 69% in 1999
- Relative importance of N₂ vs. NO₃⁻ as a source of new N has increased since 1995

STAGE I

- Nitrate-supported N flux
- High export
- Low DOM storage

STAGE II

- Transition
- Low export
- High DOM storage

STAGE III

- N₂-supported N flux
- High export
- High DOM storage

MICROBE-DUST CONNECTIONS

- Microbes require Fe for metabolism, especially N₂ fixation
- Fe delivery to the open ocean is via atmospheric dust deposition
- Dust deposition is a climate-sensitive parameter

K. Johnson, MBARI

 Fe deposition is a necessary but insufficient condition for a bloom

 A shallow mixed-layer and calm conditions enhance the overall impact

NDBC Buoy 51001

STATION ALOHA: New vs. Regenerated N Revisited

Free-Vehicle Grab Respirometer (K. Smith, SIO)

STA. ALOHA CARBON SEQUESTRATION FORECAST

Light trade winds with a diel SST change of 2-3°C and a 50% probability of significant N_2 fixation, increasing to 90% during periods of aperiodic dust (Fe) deposition, followed by pulsed export of organic matter to the abyss.

SHIFTING BIOGEOCHEMICAL-ECOLOGICAL PARADIGMS

- *Then:* Climax, time stable community *Now:* Complex, time variable community
- *Then:* eukaryote photoautotrophy *Now:* eukaryotes plus anoxygenic/oxygenic prokaryotic photoautotrophs + photoheterotrophs
- *Then:* N-limitation / nitrate-based new production hypothesis

Now: P-Fe co-limitation and Fe + N_2 fixation + P syntrophy – "new" production via "new" microbes

Conclusion: Community structure matters!

JGOFS MISSION circa 1987

"reducing uncertainty..."

JGOFS CONTRIBUTION circa 2003

"producing excitement..."

and re-directing the next several decades of marine carbon cycle research

Global Models and Predictions

- Ocean circulation models coupled with biology
- Increased
 temperature will
 impact both CO₂
 solubility and
 biological pump

POST-JGOFS CHALLENGES

- Expand coastal and open ocean observation programs including new sensors and data collection methods
- Develop a relevant, meaningful conceptual model of the ocean's carbon cycle and the role of marine microbes – the "unseen majority"
- Conduct meaningful ocean perturbation experiments to test our understanding of ecosystem processes
- Develop a mean climatology of ocean ecosystems to facilitate the detection of climate influenced change

- Preaching to the choir!
- Ocean Studies
 Board National
 Research Council
 (2001)
- Be prepared for some significant
 scientific advances
 in the next few
 decades

IN SUMMARY

"Study nature, not books"

"Strive to interpret what really exists"

... excellent advice from Louis Agassiz (1807-1873)

To be continued!