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Biogeochemical M odelling - How far have we gotten?

Modelling-related JGOFS goals:

* Determine fluxes of carbon in the ocean and exchange across

boundaries.
* Develop capability to make predictions.
Situation at the end of JGOFS:
e Complexity of physical model component.
* Applicability of biological production concepts.

o Complexity of ecological model component.



Part |. Physical Complexity: Pre-JGOFS Box M odels

atmosphere

warm 1?, advection
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Knox & McElroy (1984)
Sarmiento & Toggweiler (1984)
Siegenthaler & Wenk (1984)



Physical Complexity:
Carbon-Cycle OGCMs of the early JGOFS Period

Simulated annual sea-air flux of
pre-industrial CO,

(OCMIPL, Sarmiento et al., 2000).

L ook more realistic than box models.
Seem to converge w.r. t. integral
properties.

New Production: Restoring of
surface nutrients.
POM, DOM with fixed decay rates.

Bacastow & Maier-Reimer (1991)
Najjar et al. (1992)

OCMIP1, OCMIP2




Physical Complexity: OCMIP 2

OCMIP-2: Sea-to-Air Flux of Total CO, in 1995
(Biol. + Sol. + Anthro.)

DT Fromm Takahassi ol al {1998




Physical Complexity: OCMIP 2
Simulated Oceanic Carbon Uptake

Models were run with
specified atmospheric CO,
boundary conditions.

.
e
IGCR

—PiE

A

IPSL [DM1,GM)
—MPI

PRIMCE

LLHL

CER0

No future change in ocean
circulation.

(J. Orr and OCMIP2 group)

« Good internal agreement in past and present, divergencein future.



Physical Complexity: Glacial-Interglacial Climate Changes

Simulated atmospheric pCO, sensitivity to the biological pump
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« Climate sensitivity depends on model ar chitecture!




Physical Complexity and Climate Sensitivity:
Hypotheses

« Poor representation of wind-driven circulation in box models
(Follows et a., 2002).

« Overestimated CO, equilibration in deep-water formation

regions in box models, possibly underestimated in OGCMs
(Toggweller et al., 2003a,b).

« Unrealistically high diapycna mixing in OGCMs

(Oschlies, 2001).



Physical Complexity: Sensitivity Experiments
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Physical Complexity:
M odel-derived Estimates of Export Production
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Physical Complexity:

M odel-derived Estlmates of Export Production
eddy permitting (1/3)°

eddy resolving (1/9)°
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Physical Complexity:
M odel-derived Estlmates of Export Production
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Physical Complexity: What about Eddies?

Eddy-pumping process (Jenkins, 1988; Falkowski et al., 1991;
Denman & Gargett, 1995; Dadou et al., 1996;
McGillicuddy & Robinson, 1997; ...)

<=---">c---------—-——=--- & Snking is diapycnal process.

« Recharging of nutrients on
shallow isopycnals matters.

* Recharging requires
diapycnal nutrient transport.

« Bottleneck is diapycnal
transport rather than
Isopycnal uplift!

» time

(Oschlies, 2002)



LATITULDE

Physical Complexity:

What istheright amount of diapycnal diffusion?

Simulation of Ledwell et al.”s (1993)

Tracer Release Experiment
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Conclusions Part I: Physical Complexity

« JGOFS period: from box models to eddy resolving models.
« Climate sensitivity depends on model architecture!

« Many coarse-resolution OGCMs are too diffusive.
(In this aspect, box models may be better!)

+ Need realistic description of diapycnal processes
(small-scale mixing, eddy-induced diapycnal fluxes, double diffusion,

sinking, active vertical migration,...).

* Need accurate numerics (advection!).



Part |1: Applicability of Concepts

« Can werelate biotically effected air-sea fluxes of CO,

and O, to biological production rates?
 New production
e EXxport production

e Net community production



Applicability of Concepts:
Biological Pump and Air-Sea Exchange
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Applicability of Concepts:
Simulated Net Community Production and Air-Sea Exchange

Net community production (O-Zeuph) Biotically effected air-sea flux
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* Net heterotrophy does not imply biotically effected outgassing of CO, !




Applicability of Concepts:.
Biological Pump and Air-Sea Exchange
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Applicability of Concepts:
Simulated Net Community Production and Air-Sea Exchange | |

Net community production (O-wiML) Biotically effected air-sea flux
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« \Winter mixed layer depth is more appropriate reference depth!




Applicability of Concepts:
Biological Pump and Air-Sea Exchange
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Applicability of Concepts:
Biological Pump and Air-Sea Exchange
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Applicability of Concepts:
| norganic Contributionsto the Biological Pump
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«  Subduction of newly-remineralised inorganic matter.



Applicability of Concepts:
| norganic Contributionsto the Biological Pump
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«  Subduction of newly-remineralised inorganic matter.
« |nduction of newly-generated inorganic matter deficits.



Applicability of Concepts. Simulated interannual Variability
associated with the Biological Pump
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« Only weak relation between biotically effected air-sea exchange and
biological production rates.
(Oschlies & Kahler, subm.)



Conclusions Part |1: Applicability of Concepts

Box models

Biotically effected air-sea fluxes given
by NP, EP, NCP.

Concepts apply!

OGCMs




Conclusions Part |1: Applicability of Concepts

Box models | Zgn = Zy. Biotically effected air-sea fluxes given
by NP, EP, NCP.
Concepts apply!
OGCMs Zewn = ZyL Biotically effected air-sea fluxes differ
B from NP, EP, NCP.
Zy =Ty, |
=7 (Xy) ZyLmex APPropriate reference depth.

Both organic and inorganic fluxes
across Zy, max matter!

« Cavea: Redfield stoichiometry!




Part I11: Ecological Complexity: (i) Nutrient-Restoring M odels

S 0k 2 - 4 Parameters.
Z « nutrient uptake rate
Seasuriace 2 « remineralisation profile
Examples:
~ O A R Bacastow & Maier-Reimer (1990,91)
(euph/mix)

Najjar et al. (1992)
OCMIP1& 2

inor ganic nutrients

Export & remineralisation
= Redistribution of
inorganic nutrients



NO,

Ecological Complexity: (i1) NPZD-type M odels

DON

DET

BAC

(Fasham et al., 1990)

PHY

Z00

NPZD = Nutrient-Phytoplankton-
Zooplankton-Detritus

10-30 Par ameter s:
« uptake, loss rates
« remineralisation profile

Examples:

*« Basin scale
(Sarmiento et al., 1993; Fasham et al. ,1993; Chai et
al., 1996; McCreary et al., 1996)

« Globa Ocean
(Six & Maier-Reimer, 1996)

« eddy-permitting basin scale
(Oschlies and Garcon, 1998, 1999)

« eddy-resolving basin scale
(Oschlies, 2002)



Ecological Complexity: (i) “functional-group” type M odels

Diatoms

Microzoopl. R gl Mesozoopl.

O(100) Parameters:

@ uptake, loss rates

@ remineralisation profiles

@ multiple elements (N,P,C,S,Fe)

DOM smallPOM largePOM CaCO ,

Sedimentation

Examples:

« Moore et al. (2002)
« Aumont et al. (in press)
«  “Green Ocean Model“ consortium



Ecological Complexity: How far have we gotten?

Ecosystem model

stoichiometry

Number of adjustable
parameters

Restoring usually Redfield O(1)
NPZD-type usually Redfield O(10)
Multiple functional groups, orognostic 0(100)

multiple elemental cycles

« Intuitively””: More complex models are more realistic.




Ecological Complexity: How far have we gotten?
Parameter estimation studies (so far NPZD-type only)

(Fasham & Evans, 1995; Matear, 1995; Prunet et al., 1996; Hurtt & Armstrong, 1996/1999;
Spitz et al., 1998/2001; Fennel et al., 2001; Schartau et al., 2001; Friedrichs, 2002;....)

« Only 10-15 parameters can be constrained.

o Lotsof unconstrained degrees of freedom. Makes
extrapolation to different climate conditions
problematic.

e Are modelstoo complex?
« Model-datafits remain relatively poor.
e Errorsin physical forcing.

* Are models not complex enough?

« Do we yet have the right model structures?



Ecological Complexity: How can we proceed?

¢« Model development guided by data assimilation.

|dentify and remove redundancies.
Add complexity after analysis of residuals.

* |ncubation experiments (sea & lab).

e Mesocosm experiments.

e JGOFStime-series sites, satellite data.
e Paleo data.

* Do not disregard alternative model structures

\4

Time & space
scale

(e.qg., based on size, energy, membrane surfaces, ....)



Conclusions: How far have we gotten?

« Physical complexity: probably OK.
e eddy resolving models, smaller scale process models

e Improved parameterisations for coarser resolution
models (isopycnal / diapycnal mixing)

« Applicability of concepts. OK with some care.

* |ncreased model complexity requires more complex
analysis strategies/ concepts.

« Ecological complexity: Not so clear, yet.
e Do we yet have the right model structures?

e Beambituous: Search for Kepler'slaws ~ rather than
for "Ptolomaic epicycles .



