

The Sea Floor as a Sediment Trap:

Contributions to JGOFS from Benthic Flux Studies

Richard A. Jahnke

Skidaway Institute of Oceanography

- Milestones and Acknowledgements
- Why Benthic Fluxes are Useful
- Global Distribution of Sea Floor Flux
- Opal as Ballast for POC Flux

Major Highlights in the Development of Deep Sea Benthic Flux Studies

- Ken Smith (SIO) begins frequent benthic oxygen fluxes measurements in the deep sea with the free vehicle grab respirometer
- Clare Reimers (OSU) introduces microelectrode oxygen pore water measurements

Major Highlights in the Development of Deep Sea Benthic Flux Studies

- Fred Sayles begins in situ benthic flux time-series measurements off Bermuda
- Ken Smith deploys ROVER for long timeseries, benthic flux measurements
- >20 groups worldwide

What makes benthic flux measurements useful to JGOFS?

- Ultimate Sediment Trap
- Represents deep, climate time-scale fluxes
- Solute fluxes supported by remineralization a destructive process
- Dampen input variability facilitating estimate of mean fluxes
- Physical boundary, multiple approaches for assessing accuracy
- Links modern processes to the sediment record
- Provides a approach

What makes benthic flux measurements useful to JGOFS?

- Ultimate Sediment Trap
- Dominated by deep, climate time-scale fluxes
- Solute fluxes supported by remineralization a destructive process
- Dampen input variability facilitating estimate of mean fluxes
- Physical boundary, multiple approaches for assessing accuracy
- Links modern processes to the sediment record
- Provides a approach

Benthic O₂ and Si Fluxes (Sayles) & POC and PSi Fluxes (Deuser)

Smith Time-series

Northeastern

Pacific

What makes benthic flux measurements useful to JGOFS?

- Ultimate Sediment Trap
- Dominated by deep, climate time-scale fluxes
- Solute fluxes supported by remineralization a destructive process
- Dampen input variability facilitating estimate of mean fluxes
- Physical boundary, multiple approaches for assessing accuracy
- Links modern processes to the sediment record
- Provides a approach

Flux Comparison

Average Microelectrode Flux 45±22 µmol O₂ cm⁻² yr⁻¹

Average Chamber Flux 44±11 µmol O₂ cm⁻² yr⁻¹

Reimers et al.1992

What makes benthic flux measurements useful to JGOFS?

- Ultimate Sediment Trap
- Dominated by deep, climate time-scale fluxes
- Solute fluxes supported by remineralization a destructive process
- Dampen input variability facilitating estimate of mean fluxes
- Physical boundary, multiple approaches for assessing accuracy
- Links modern processes to the sediment record
- Provides an alternative perspective on deep fluxes

Locations of Flux Estimates in Data Base

Primary Productivity

Α

Sea Floor Flux Summaries (10¹² mol O₂ yr⁻¹)

	Slope	Rise	Equator	Gyre	Total
Atlantic	3.4 (23)	3.5 (24)	0.53 (3)	7.4 (50)	14.8
Pacific	4.8 (20)	4.2 (17)	3.1 (13)	12 (50)	24.1
Indian	4.3 (28)	3.9 (25)	0.9 (6)	6.3 (41)	15.4
Ocean	12.5 (23)	11.6 (21)	4.5 (8)	25.7 (47)	54.3

Figure 9. Export production of particulate organic matter (POM) [mol C m⁻² yr⁻¹] for the global model.

R. Schlitzer

Wenzhofer & Glud (2002) Total Benthic Oxygen Uptake

Francois et al. 2002 - Sediment Trap Locations

Trap POC Flux - Ballast Flux Correlations

Francois et al. 2002

Benthic Fluxes Predicted from Sediment Trap Regressions and Benthic POC Flux Estimate

Carrying Phase	POC Flux (10 ¹² g/yr)	% of Total
CaCO ₃	521 - 617	80 - 83
SiO ₂	84 - 95	11 - 15
Clay	39 - 41	5 - 6

Klaas & Archer, 2002

Heinze, et al. In press (GBC) HAMOCC model & Biogeochemical Si Cycle Pacific N-S Section Atlantic N-S Section

Scc.

-0000

Silicic Acid (µmol kg⁻¹)

Depth(m)

Heinze, et al. In press (GBC)

HAMOCC model & Biogeochemical Si Cycle

Free Vehicle Chamber - North Carolina Slope

Benthic Flux Chamber Results

Values in g m⁻² y⁻¹

Trap - Chamber Comparison

values in g m⁻² y⁻¹

Conclusions

- Sea floor is the ultimate sediment trap
- Benthic flux distributions provide a unique perspective of global particulate fluxes
- Variations in benthic fluxes imply large differences in POC transfer efficiency to the deep ocean
- Fluxes of mineral components imply significant variations in the role of individual ballasting materials.
- Future flux studies may need to expand to additional ecosystem types to achieve global closure of the biological carbon pump.

Klaas & Archer, 2002

Annual Sediment Trap Fluxes

All values in g m⁻² d⁻¹