References associated with article:Iglesias-Rodriquez MD, Armstrong R, Feely R, Hood R, Kleypas J, Milliman J, Sabine C and Sarmiento J. 2002. CaCO3 in a changing ocean: implication for the marine carbon cycle, carbonate producing organisms, and global climate. (prepared for Eos)

Global CaCO3 Budget
Role of CaCO3 in the Carbon Cycle
Major Marine Calcifiers, Their Role in the Carbon Cycle, and Effects of CO2 on Calcifiers
   Coccolithophores
   Pteropods
   Corals and Calcareous Algae
   Foraminifera
Processes Affecting the Marine CaCO3 Budget
   Particle Settling and CaCO3 as Ballast for Carbon in Open Ocean
   CaCO3 Dissolution
   CaCO3 in Sediments
 

Global CaCO3 Budget

Archer D, 1996. A data-driven model of the global calcite lysocline. Global Biogeochemical Cycles 10(3): 511-526.

Broecker WS and Peng T-H, 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY. 690 pp.

Catubig NR, Archer DE, Francois R, deMenocal P, Howard W and Yu EF, 1998. Global deep-sea burial rate of calcium carbonate during the last glacial maximum. Paleoceanography 13(3): 298-310.

Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng TH, Kozyr A, Ono T and Wong CS, 2002. In-situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles (submitted).

Kleypas JA, 1997. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanography 12: 533-545.

Lee K, 2001. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnology and Oceanography 46(6): 1287-1297.

Li YH, Takahashi T and Broecker WS, 1969. Degree of saturation of CaCO3 in the oceans. Journal of Geophysical Research 74: 5507-5525.

Milliman JD, 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles 7: 927-957.

Milliman JD and Droxler AW, 1996. Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geologische Rundschau 85: 496-504.

Morse JW and Mackenzie FT, 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48, Elsevier, Amsterdam, 707 pp.

Sabine CL, Key RM, Feely RA and Greeley D, 2002. Inorganic carbon in the Indian Ocean: Distribution and dissolution processes. Global Biogeochemical Cycles (submitted).
 

Role of CaCO3 in the Carbon Cycle

Archer D, Kheshgi H and Maier-Reimer E, 1997. Multiple timescales for neutralization of fossil fuel CO2 , Geophysical Research Letters 24(4): 405-408.

Archer D, Kheshgi H and Maier-Reimer E, 1998. Dynamics of fossil fuel neutralization by Marine CaCO3 , Global Biogeochemical Cycles 12: 259-276.

Archer D and Maier-Reimer E, 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367: 260-264.

Archer D, Eshel G, Winguth A and Broecker W, 2000. Atmospheric CO2 sensitivity to the biological pump in the ocean. Global Biogeochemical Cycles 14(4) 1219-1230.

Broecker WS and Peng T-H, 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY. 690 pp.

Howard WR, Prell WL, 1994. Late Quaternary CaCO3 production and preservation in the Southern-Ocean - Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9(3): 453-482.

Morse JW and Mackenzie FT, 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48, Elsevier, Amsterdam, 707 pp.

Sarmiento JL, Dunne J, Gnanadesikan A, Key RM, Matsumoto K, and Slater R. 2002. A new estimate of the CaCO3 to organic carbon export ratio, (in prep.)

Yamanaka Y and Tajika E, 1996. The role of vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochemical Cycles 10: 361-382.

Zeebe RE and Wolf-Gladrow D, 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, London, U.K.

Zeebe RE, Wolf-Gladrow DA and Jansen H, 1999. On the time required to establish chemical and isotopic equilibrium in the carbon dioxide system in seawater. Marine Chemistry 65(3-4): 135-153.
 

Major Marine Calcifiers, Their Role in the Carbon Cycle, and Effects of CO2 on Calcifiers

Coccolithophores

Bown PR and Young JR 1998. Introduction. In: Calcareous Nannofossil Biostratigraphy, PR Bown (ed), Chapman and Hall/Kluwer, 1-15.

Buitenhuis ET, 2000. Interactions between Emiliania huxleyi and the dissolved inorganic carbon system. PhD Thesis, Rijksuniversiteit Groningen (University of Groningen, Netherlands), 95 pp.

Buitenhuis ET, van der Wal P and de Baar HJW, 2001. Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation, Global Biogeochemical Cycles 15(3): 577-587.

Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd P, Burkhill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM and van der Wal P. 1993. A biogeochemical study of the coccolithophorid, Emiliania huxleyi, in the North Atlantic, Global Biogeochemical Cycles 7: 879-900.

Holligan PM, Viollier M, Harbour DS, Camus P and Champagne-Philippe M, 1983. Satellite and ship studies of coccolithophorid production along a continental shelf edge, Nature , 304, 339-342.

Iglesias-Rodriguez MD, Brown C, Doney S, Kleypas J, Kolber D, Kolber Z, Hayes PK and Falkowski PG, 2002. Representing key phytoplankton functional groups in ocean carbon cycle models: 1. Coccolithophores, Global Biogeochemical Cycles (in press).

Linschooten C, Van Bleijswijk JDL, Van Emburg PR, de Vrind JPM, Kempers ES, Westbroek P and de Vrind-de Jong EW, 1991. Role of light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae). Journal of Phycology 27: 82-86.

Paasche E, Brubak S, Skattbx S, Young JR and Green JC, 1996. Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities, Phycologia 35, 394-403.

Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM, 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2 . Nature 407: 364-368.

Takahashi K and Okada H, 2001. Paleoceanography for the last 195,000 years in the Solomon Sea (ODP Site 1109) by means of calcareous nannofossils. Marine Micropaleontology 42(1-2): 45-59.

Westbroek P and De Jong EW (eds), 1983. Biomineralization and Biological Metal Accumulation, Biological and Geological Perspectives, Reidel, Dordrecht, 593 pp.

Westbroek P, Brown CW, Vanbleijswijk J, Brownlee C, Brummer GJ, Conte M, Egge J, Fernandez E, Jordan R, Knappertsbusch M, Stefels J, Veldhuis M, Vanderwal P and Young J, 1993. A model system approach to biological climate forcing - the example of Emiliania huxleyi. Global and Planetary Change 8: 27-46.

Westbroek P, Young JR and Linschooten K, 1989. Coccolith production (biomineralisation) in the marine alga Emiliania huxleyi. Journal of Protozoology 36, 368-373.

Pteropods

Betzner PR, Byrne RH, Acker JG, Lewis CS, Jolley RR and Feely RA, 1984. The oceanic carbonate system: a reassessment of biogenic controls. Science 226(4678): 1074-1077.

Bhattacharjee D, 1997. `Pteropod preservation spike' and its significance in the Andaman Sea. Journal of the Palaeontological Society of India v. 42.

Byrne RH, Acker JG, Betzer PR, Feely RA and Cates MH, 1984. Water column dissolution of aragonite in the Pacific Ocean. Nature 312(5992): 321-326.

Fabry VJ, 1990. Shell growth rates of pteropod and heteropod molluscs and aragonite production in the open ocean: Implications for the marine carbonate system. Journal of Marine Research 48(2): 209-222.

Corals and Calcareous Algae

Borowitzka MA, 1981. Photosynthesis and calcification in the articulated coral line red alga Amphiroa anceps and A. foliacea. Marine Biology 62: 17-23.

Borowitzka MA and Larkum AWD, 1976. Calcification in the green alga Halimeda. An ultrastructural study of the thallus development. Journal of Phycology 13(1):6-16.

Borowitzka MA and Larkum AWD, 1976. Calcification in the green alga Halimeda II. The exchange of Ca2+ and the occurrence of age gradients in calcification and photosynthesis. Journal of Experimental Botany 27:22-36.

Borowitzka MA and Larkum AWD, 1976. Calcification in the green alga Halimeda III. The sources of carbon for photosynthesis and calcification and a model of the mechanism of calcification. Journal of Experimental Botany 27:37-51.

Borowitzka MA and Larkum AWD, 1976. Calcification in the green alga Halimeda IV. The effects of metabolic inhibitors on calcification and photosynthesis. Journal of Experimental Botany 27:52-65.

Gattuso J-P, Allemand D and Frankignoulle M, 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. American Zoologist 39(1): 160-183.

Gattuso J-P, M Frankignoulle, I Bourge, S Romaine, RW Buddemeier, 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change 18: 37-46.

Kleypas JA 1997. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanography 12: 533-545.

Kleypas JA and Langdon C, 2002. Overview of CO2 -induced changes in seawater chemistry. Proceedings, 9TH Int Coral Reef Symp Bali, Indonesia, 23-27 Oct 2000 (in press).

Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C and Opdyke B, 1999. Geochemical consequences of increased atmospheric CO2 on coral reefs. Science 284: 118-120.

Langdon C, Takahashi T, Marubini F, Atkinson M, Sweeney C, Aceves H, Barnett H, Chipman D and Goddard J, 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles 14: 639-654.

Langdon C, 2002. Review of experimental evidence for effects of CO2 on calcification of reef builders. Proceedings, 9TH Int Coral Reef Symp Bali, Indonesia, 23-27 Oct 2000 (in press).

Leclercq N, Gattuso J-P and Jaubert J, 2000. CO2 partial pressure controls the calcification rate of a coral community. Global Change Biology 6: 329-334.

Marubini F, Barnett H, Langdon C and Atkinson MJ, 2001. Interaction of light and carbonate ion on calcification of the hermatypic coral Porites compressa. Marine Ecology-Progress Series 220: 153-162.

Pueschel CM, Eichelberger HH and Trick HN, 1992. Specialized calciferous cells in the marine algae Rhodogorgon carriebowensis and their implications for modes of red algae calcification. Protoplasma 166:89-98.

Tambutte R, Allemand D, Mueller E and Jaubert J, 1996. A compartmental approach to the mechanism of calcification in hermatypic corals, Journal of Experimental Biology 199: 1029-1041.

Tambutte E, Allemand D, Bourge I, Gattuso J-P, and Jaubert J, 1995. An improved Ca-45 protocol for investigating physiological-mechanisms in coral calcification. Marine Biology 122(3): 453-459.

Thoms S, Pahlow M and Wolf-Gladrow DA, 2001. Model of the carbon concentrating mechanism in chloroplasts of eukaryotic algae. Journal of Theoretical Biology 208(3): 295-313.

Foraminifera

Berger WH, 1968. Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep-Sea Research 15: 31-43.

Chen MT, Prell WL, 1998. Faunal distribution patterns of planktonic foraminifers in surface sediments of the low-latitude Pacific. Palaeogeogr., Palaeoclimatol., Palaeoecol. 137(1-2): 55-77

Erez J, 1983. Calcification rates, photosynthesis and light in planktonic forami nifera, In: Biomineralization and Biological Metal Accumulation, P Westbroek and EW de Joeng (eds) p. 307-312

Loubere P and Fariduddin M, 1999. Benthic Foraminifera and flux of organic carb on to the seabed, Chapter 11, In: Modern Foraminifera, B Sen Gupta (ed), p. 181-200, Kluwer Press.

Nürnberg D, Bijma J and Hemleben Ch, 1996. Assessing the realibility of Magnesium in foraminiferal calcite as a proxy for water mass temperature, Geochimica et Cosmochimica Acta 60,5, p. 803-814.

Wolf-Gladrow DA, Bijma J and Zeebe RE, 1999. Model simulation of the carbonate chemistry in the microenvironment of symbiont bearing foraminifera. Marine Chemistry 64(3): 181-189.
 

Processes Affecting the Marine CaCO3 Budget

Particle Settling and CaCO3 as Ballast for Carbon in Open Ocean

Armstrong RA, Lee C, Hedges JL, Honjo S and Wakeham SG, 2002. A new, mechanistic model for organic carbon fluxes in the ocean, based on the quantitative association of POC with ballast minerals. Deep-Sea Research II 49(1-3): 219-236.

Berelson WM, 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Research II 49(1-3): 237-251.

Berelson WM, Anderson RF, Dymond J, Demaster D, Hammond DE, Collier R, Honjo S, Leinen M, Mcmanus J, Pope R, Smith C, Stephens M. 1997. Biogenic budgets of particle rain, benthic remineralization and sediment accumulation in the equatorial Pacific. Deep-Sea Research II 44(9-10): 2251-2282.

Honjo S, 1997. The rain of ocean particles and Earth's carbon cycle. Oceanus 40(2): 4-7.

Honjo S, Francois R, Manganini S, Dymond J, Collier R, 2000. Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170 degrees W. Deep-Sea Research II 47(15-16): 3521-3548.

Klaas C and Archer D, 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles (submitted).

CaCO3 Dissolution

Acker JG, Byrne RH, Ben-Yaakov S, Feely RA and Betzer PR, 1987. The effect of pressure on aragonite dissolution in seawater. Geochimica et Cosmochimica Acta 51: 2171-2175.

Betzer PR, Byrne RH, Acker JG, Lewis CS, Jolley RR and Feely RA, 1984. The oceanic carbonate system: a reassessment of biogenic controls. Science 226(4678): 1074-1077.

Feely RA, Byrne RH, Acker JG, Betzer PR, Chen CTA, Gendron JF and Lamb MF, 1988. Winter-summer variations of calcite and aragonite saturation in the Northeast Pacific, Marine Chemistry 25: 227-241.

Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng TH, Kozyr A, Ono T and Wong CS, 2002. In-situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles (submitted).

Jahnke RA, Craven DB, McCorkle DC and Emerson CE, 1997. CaCO3 dissolution in California continental margin sediments: the influence of organic matter remineralization. Geochimica et Cosmochimica Acta 61: 3587-3604.

Jansen H and Wolf-Gladrow DA, 2001. Carbonate dissolution in copepod guts: a numerical model. Marine Ecology-Progress Series 221: 199-207.

Milliman JD, Troy PJ, Balch WM, Adams AK, Li YH and Mackenzie FT, 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Research I 46(10): 1653-1669.

Sabine CL and Mackenzie FT, 1995. 1995. Bank-Derived Carbonate Sediment Transport and Dissolution in the Hawaiian Archipelago. Aquatic Geochemistry 1: 189-230.

Sabine CL, Key RM, Feely RA and Greeley D, 2002. Inorganic carbon in the Indian Ocean: Distribution and dissolution processes. Global Biogeochemical Cycles (submitted).

CaCO3 in Sediments

Archer D, 1996. A data-driven model of the global calcite lysocline. Global Biogeochemical Cycles 10(3): 511-526.

Catubig NR, Archer DE, Francois R, deMenocal P, Howard W and Yu EF, 1998. Global deep-sea burial rate of calcium carbonate during the last glacial maximum. Paleoceanography 13(3): 298-310.

Martin WR, Sayles FL, 1996. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic Geochimica et Cosmochimica Acta 60: 243-263.


File translated from TEX by TTH, version 2.60.
On 15 Mar 2002, 15:31.