The oceanic sink for anthropogenic CO$_2$: Combining observations with models

Nicolas Gruber1, J. Orr2 and OCMIP-members, C. Sabine3 and GLODAP members, M. Gloor4 and J. L. Sarmiento5

(1) Institute of Geophysics and Planetary Physics & Department of Atmospheric Sciences, University of California, Los Angeles

(2) Laboratoire des Sciences du Climat et de l’Environnement CEA Saclay, Gif-sur-Yvette, France.

(3) Joint Institute for the Study of Atmosphere and Ocean, University of Washington

(4) Max Planck Institute for Biogeochemistry, Jena, Germany

(5) Program in Oceanic and Atmospheric Sciences, Princeton University
Outline

1. The problem: From concentrations to fluxes
2. Forward Modeling: OCMIP-2
3. Inverse Modeling: First steps
4. Summary and Outlook
Figure 4

ANTHROPOGENIC CO$_2$ [µmol/kg]

Distance [km]

Depth [m]

Depth [m]
FORWARD AND INVERSE MODELING

FORWARD MODELING

- Boundary conditions
- Initial conditions
- Model (e.g. General Ocean Circulation Model)
- Tracer distribution

INVERSE MODELING

- Tracer distribution
- Inverse model (e.g. Adjoint Model of OGCM)
- Boundary conditions

e.g. surface fluxes
OCMIP-2: ANTHROPOGENIC AIR-SEA CO$_2$-FLUXES

Positive: Flux out of ocean

Anthropogenic Fluxes

J. Orr and OCMIP-2
OCMIP-2: ANTHROPOGENIC CO₂ FLUXES, STORAGE, AND TRANSPORT

J. Orr and OCMIP-2 (pers. comm)
OCMIP-2: Anthropogenic DIC along West Atlantic Track
(North: TTO-1982; South: SAVE-1989)
OCMIP-2: ANTHROPOGENIC CO₂ UPTAKE

<table>
<thead>
<tr>
<th>Model</th>
<th>Uptake Rate (PgC/yr) 1980-1989</th>
<th>Uptake Rate (PgC/yr) 1990-1999 (S650)</th>
<th>Inventory (Pg) 1765-1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINCE</td>
<td>1.65</td>
<td>1.98</td>
<td>102</td>
</tr>
<tr>
<td>IPSL.DM1 (HOR)</td>
<td>1.67</td>
<td>1.98</td>
<td>108</td>
</tr>
<tr>
<td>LLNL</td>
<td>1.78</td>
<td>2.08</td>
<td>108</td>
</tr>
<tr>
<td>CSIRO</td>
<td>1.78</td>
<td>2.11</td>
<td>108</td>
</tr>
<tr>
<td>MIT</td>
<td>1.91</td>
<td>2.29</td>
<td>117</td>
</tr>
<tr>
<td>NCAR</td>
<td>1.93</td>
<td>2.30</td>
<td>115</td>
</tr>
<tr>
<td>PRINC2</td>
<td>1.93</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>IPSL (GM)</td>
<td>1.97</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>MPIM</td>
<td>2.01</td>
<td>2.43</td>
<td>124</td>
</tr>
<tr>
<td>SOC</td>
<td>2.01</td>
<td>2.39</td>
<td>123</td>
</tr>
<tr>
<td>IPSL.DM1 (GM)</td>
<td>2.03</td>
<td>2.43</td>
<td>125</td>
</tr>
<tr>
<td>IGCR</td>
<td>2.05</td>
<td>2.47</td>
<td>127</td>
</tr>
<tr>
<td>PIUB</td>
<td>2.11</td>
<td>2.52</td>
<td>135</td>
</tr>
<tr>
<td>AWI</td>
<td>2.14</td>
<td>2.58</td>
<td>127</td>
</tr>
<tr>
<td>NERSC</td>
<td>2.38</td>
<td>2.84</td>
<td>146</td>
</tr>
<tr>
<td>UL</td>
<td>2.51</td>
<td>3.04</td>
<td></td>
</tr>
</tbody>
</table>

Mean 1.99± 0.23, 2.38± 0.29, 121± 12

Range 1.65-2.51, 1.98-3.04, 102-146

"OBSERVATIONS**" 103 ± 20

* Sabine et al. (pers. comm)

J. Orr and OCMIP-2 (pers.comm.)
OCMIP-2: ANTHROPOGENIC CO₂ FLUX
VERSUS CFC-11 INVENTORY AND VERSUS NATURAL C14

\[\delta \text{CO}_2 \text{ vs. CFC-11} \]

\[y = 0.2828(x) + 0.7631 \]

\[r^2 = 0.82 \]

\[\delta \text{CO}_2 \text{ vs. Natural } \Delta^{14}\text{C} \]

\[y = 0.004427(x) + 2.865 \]

\[r^2 = 0.57 \]

J. Orr and OCMIP-2 (pers.comm.)
Principle of Oceanic Inversion

• The ocean surface is partitioned into \(n \) regions.

• Basis functions

 – *Anthropogenic CO\(_2\)* Inversion

 In a OGCM, time-varying fluxes of dye tracers (\(\Phi \)) are imposed in each of the \(n \) regions, and the model is run forward in time, i.e. for \(\text{CO}_2(1750-2000) \)

\[
\vec{\Phi}(t) = \vec{\Phi}(t = 0) \ast (p\text{CO}_2(t) - p\text{CO}_2(t = 0))
\]

• The model predictions of the dye concentrations are sampled at the observation stations and arranged as a vector \(\vec{\chi}_{\text{OGCM}} \). The model therefore provides us with a transport matrix \(A_{\text{OGCM}} \) that relates the fluxes to the distribution,

\[
\vec{\chi}_{\text{OGCM}} = A_{\text{OGCM}} \vec{\Phi}.
\]

• Modeled distributions at the observations stations are substituted with observed ones and the matrix \(A \) is inverted to get an estimate of the surface fluxes (\(\vec{\Phi}_{\text{est}} \)):

\[
\vec{\Phi}_{\text{est}} = A_{\text{OGCM}}^{-1} \vec{\chi}_{\text{obs}}.
\]
INVERSE AIR-SEA CO$_2$-FLUXES

Pre-industrial CO$_2$ flux
Anthropogenic CO$_2$ Flux
Total CO$_2$ Flux

Anthropogenic CO$_2$ Flux: 1.8 PgC yr$^{-1}$

Gloor et al. (submitted), Gruber et al. (in prep.)
ANTHROPOGENIC AIR-SEA CO₂-FLUXES

Gloor et al. (submitted), Gruber et al. (in prep.)
Summary and Outlook

• Despite fundamental differences between forward and inverse modeling of anthropogenic CO$_2$ fluxes, similar results emerge.

• Both methods indicate that the ocean south of 36°S takes up about 40% of the global anthropogenic CO$_2$. The second most important region for uptake are the tropics, followed by the North Atlantic.

• Substantial differences exist at more regional scales, with the Southern Ocean showing also the highest variations.

• Improvements need to made both on the modeling side as well as on the anthropogenic CO$_2$ reconstruction side.

• The challenge for the future consists in determining the anthropogenic CO$_2$ uptake in a changing ocean environment.