Uptake Kinetics of Phytoplankton in presence of Nutrient Interaction: Lessons from JGOFS Experiments in the Indian Ocean

Kirit S. Yajnik, M. K. Sharada and P. S. Swathi

CSIR Centre for Mathematical Modelling and Computer Simulation (C-MMACS) Wind Tunnel Road, Bangalore 560037, INDIA ksy@cmmacs.ernet.in

Summary: Analysis of experiments of McCarthy et al (1999) on the inhibitory effect of ammonium on nitrate uptake by phytoplankton suggests that the uptake kinetics has the properties of *similarity* and *hyperbolicity*. A formulation based on these two properties leads to a recently proposed kinetic relation for the interaction of nitrate and ammonium. It represents the observations of McCarthy et al (1999) more accurately than several earlier relations. The consequences of using three uptake relations with kinetic parameters determined on the basis of these experiments are examined by 3D simulations of a biological-physical model in the North Indian Ocean using climatological forcing. The spatial variations of the annual average primary productivity for the three uptake relations are compared with SeaWiFS data, and the distribution for the relation based on similarity and hyperbolicity is found to compare most favourably.

Similarity in Multi-nutrient Kinetics:

We write the 2-nutrient kinetic relation as:

$$\mathbf{r}_i = Pf(I)v_i(N_1, N_2) \tag{1}$$

Notation is given in Table 2. If v_i can be expressed as a product of a function of N_1 and a function of N_2 , we say that the kinetic relation for *i* th nutrient has the property of similarity. Then we may write

$$v_i = g_i(N_1)h_i(N_2)$$
 (2)

In that case, in an experiment in which only nitrate N_1 is varied, the uptake normalized with respect to a reference value \mathbf{r}_i^r for N_1^r is given by

$$\frac{\mathbf{r}_{i}}{\mathbf{r}_{i}^{r}} = \frac{g_{i}(N_{1})}{g_{i}(N_{1}^{r})}$$
(3)

The above conclusion implies that as the normalized uptake depends only on N_1 the results of several such experiments on the same phytoplankton population would collapse on to a single curve. A similar conclusion can also be drawn for an experiment in which ammonium concentration N_2 is varied.

Experiments by McCarthy et al (1999) support this hypothesis (See Fig. on the left.).

Ammonium inhibition experiments of McCarthy et al (DSRII 1999) 2.5 Normalized nitrate uptake (n mol/kg/hr) 1.5 0.5 2 0 Ammonium (micro mol/kg)

If v_i has the following form $v_i = \frac{\mathbf{A} + \mathbf{B}N_j}{\mathbf{C} + N_j}$ (4)for some coefficients A, B and C, which do not depend on N_{i} , the relation is said to be hyperbolic with respect to N_i . Then the curve of uptake or normalized uptake of *i* th nutrient an experiment, in which N_i alone is varied, is a rectangular hyperbola with $N_i = -C$ and $v_i = B$ as asymptotes. The main justification for this property comes from enzyme kinetics. The relation of Yajnik and Sharada (2002) is based on both these properties (Table 1).

Hyperbolicity in Multi-nutrient Kinetics:

Relation	Uptake of nitrate for	Uptake of ammonium
	for optimal radiance, v_1	for optimal radiance, v_2
Wroblewsk	$\underline{V_1N_1}_{e^{-\mathbf{y}N_2}}$	$V_2 N_2$
i	$\frac{1}{k_1 + N_1}e^{y_1}$	$\frac{1}{k_2 + N_2}$
(WR)		2 2
O'Neill et	$k_2 V_1 N_1$	$\mathbf{k}_1 \mathbf{V}_2 \mathbf{N}_2$
al (ON)	$k_1k_2 + k_2N_1 + k_1N_2$	$k_1k_2 + k_2N_1 + k_1N_2$
Walsh &	$V_1 N_1$ (1 - N) if $N < 1/2$	$V_2 N_2$
Dugdale	$\frac{V_1 N_1}{k_1 + N_1} (1 - a N_2), \text{ if } N_2 \le 1/a;$	$\frac{\mathbf{V}_2 \mathbf{N}_2}{\mathbf{k}_2 + \mathbf{N}_2}$
(WD)	0, if $N_2 > 1/a$.	
Jamart et	$s_1 \mathbf{V}_1 N$ if $N < 5$	$s_2 \mathbf{V}_2 N$ if $N < 5$
al (JA)	$\frac{s_1 V_1 N}{k(0.2+0.16N)+N}, \text{ if } N \le 5;$	$\frac{s_2 V_2 N}{k(0.2 + 0.16N) + N}, \text{ if } N \le 5;$
(374)	$s_1 V_1 N$: $N > 5$	$s_2 V_2 N$ is $N > 5$
	$\frac{\frac{s_1 V_1 N}{k+N}, \text{ if } N > 5.}{\frac{V_1 N_1}{k_2}}$	$\frac{s_2 \mathbf{V}_2 N}{\mathbf{k} + N}, \text{if } N > 5.$
Parker	V_1N_1 k_2	V_2N_2
(PA)	$\overline{\mathbf{k}_1 + N_1} \overline{\mathbf{k}_2 + N_2}$	$\overline{\mathbf{k}_2 + N_2}$
Yajnik &	$V_1 N_1 1 + a N_2$	$V_2 N_2$
Sharada (YS)	$\overline{\mathbf{k}_1 + N_1} \overline{1 + \mathbf{b}N_2}$	$\frac{\mathbf{V}_2 \mathbf{N}_2}{\mathbf{k}_2 + \mathbf{N}_2}$

Table 1 Kinetic relations proposed by various authors

Table 2 Notation for the kinetic relations

Symbol	Comment
Symbol	
1	Index i = 1 for nitrate, = 2 for ammonium
\boldsymbol{r}_i	Uptake of i th nutrient (mM-N day ⁻¹)
N_i	Concentration of i th nutrient (μ M-N It ⁻¹)
\boldsymbol{n}_i	Uptake rate of i th nutrient for optimal irradiance (day ⁻¹)
$V_{ m i}$	Asymptotic uptake rate of nitrate/ammonium (day ⁻¹)
Р	Phytoplankton biomass (μ M-N It ⁻¹)
Ι	Photosynthetically active irradiance (μE m ⁻² s ⁻¹)
Ν	$= N_1 + N_2$
s_1, s_2	Switching factors in JA defined by the following.
	If $N_2 > N_{cr}$, $s_1 = 0 \& s_2 = 1$; if $N_2 < N_{cr}$, and $N_1 = N_{cr}$, $s_1 = 1 \& S_1 = 1 \& S_2 = 1$.
	$S_2 = 0;$
	otherwise, $s_1 = N_1 / N \& s_2 = N_2 / N$

Correlation coefficient for calculated and experimental values of McCarthy et al (1999) (n=30)

values of McCarthy et al (1999) (n=30)

Observations of McCarthy et al (1999) at stn S11 and values given by kinetic relations

Table 3 Parameters used in calculating nitrogen uptake with kinetic relations for comparison with McCarthy et al's experiments

Parameter	Relation	Value	
		Unoptimised	Optimised
$k_1 \text{ (mMol N m}^3)$	WR	1	1
	ON	0.2	0.27
	YS	0.5	1
	PA	3.69	1
	WD	1.5	1
$k_2 \text{ (mMol N m}^3)$	WR	1	1
	ON	0.1	0.26
	YS	0.5	1
	PA	0.25	1.82
	WD	1.5	1
V ₁ /V ₂	PA	0.575	1
	All others	1	1
Ψ (mMol N m ⁻³) ⁻¹	WR	1.462	0.27
a $(mMol N m^{-3})^{-1}$	YS	1	0.72
b $(mMol N m^{-3})^{-1}$	YS	3	2.6
$\alpha \text{ (mMol N m}^{-3})^{-1}$	WD	0.25	0.14
N _c	JA	0.5	4.35
k	JA	1	0.24

Experiments of McCarthy et al and kinetic relation (YS) with optimized parameters

3D Simulation Results and Observations

Annual Primary Productivity (gC m⁻² yr⁻¹) in Euphotic Zone

Annual f-ratio in Euphotic zone

Annual Particle Export Ratio at 120 m

Profiles of Nitrate and Chlorophyll at JGOFS Station S4 (19 N, 59 E)

Conclusions

- Similarity and hyperbolicity are believed to be fundamental properties of multi-nutrient kinetics.
- A kinetic relation based on these properties for ammonium-nitrate system represents the experimental results of McCarthy et al (1999) more accurately than other kinetic relations.
- Results of 3 D simulations for three kinetic relations (ON, WR, YS) for the North Indian Ocean with climatological forcing are compared with Satellite and cruise data (SeaWiFS and JGOFS). Annual primary productivity for two relations (ON, YS) compares more favourably with SeaWiFS data than WR relation. Profiles of nitrate and chlorophyll for these two also agree better with JGOFS data at station S4. However, none of the relations capture subsurface chlorophyll maximum due to the treatment of large scale convection in the physical oceanographic model.
- Accurate representation of multi-nutrient kinetics is necessary for reliable simulation of marine ecosystem.

Details are given in the following references:

Sharada, M. K., Yajnik K. S. and Swathi, P. S. Evaluation of six relations of kinetics uptake by phytoplankton in multi-nutrient environment using JGOFS experimental results. Communicated to DSR II.

Swathi, P. S., Sharada, M. K. and Yajnik, K. S., 2000. A coupled physical-biological-chemical model for the Indian Ocean. *Proceedings of Indian Academy of Sciences* (Earth and Planetary Sciences), 109: 503-537.

Yajnik, K.S. and Sharada, M.K., 2002. Ammonium inhibition of nitrate uptake by phytoplankton: Implications of recent experiments on modelling. C-MMACS Research Report CM 0201.

Yajnik, K.S. and Sharada, M.K., 2003. Hyperbolic least square method of estimation of nutrient kinetics parameters in marine biology. C-MMACS Research Report CM 0301.

Yajnik, K. S. and Sharada, M. K. Ammonium inhibition of nitrate uptake by phytoplankton: A new relation based on similarity and hyperbolicity. Communicated to Current Science.