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In a week, the assemblages in the tanks acclimated to the new light conditions and grew exponentially 
until nutrient depletion. A new growth pulse was observed after nutrient addition on November 26.

Microalgae were initially adapted to low irradiance levels, 
showing a growth potential 10 times lower than that typical of 
planktonic populations. Photosynthetic efficiency and 
photoacclimation index (Ek) increased in time, from November 
11 to 25. Photosynthetic capacity (PB

max) reached values 20 
times higher than the initial ones.

November 1999

During the XV Italian Antarctic 
Expedition (October-December 1999), a 
study was carried out on the role of 
bottom and platelet sea ice flora in 
seeding pelagic blooms at Terra Nova 
Bay (TNB), Ross Sea. Samples of 
consolidated pack ice and platelet ice 
were collected every three days. 
Photosynthetic experiments, HPLC 
pigment analyses and light and 
electron microscopy analyses were 
performed on ice samples and on 
samples from mesocosm experiments
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Platelet-ice microalgal assemblages used in the experiments were dominated (70%) by  
benthic species.
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Antarctic pack ice may reach a surface of 2·107 km2 at its peak extension, representing a large and very dynamic 
ecosystem. Ice melting plays a pivotal role in phytoplankton bloom development by increasing water column stability and 
by releasing phytoplankton cells that may seed pelagic blooms. In coastal areas, a loose structure of flat, discoidal ice 
platelets may develop under the pack ice. This platelet ice layer ranges from a few cm up to ten m thickness.

During the austral spring, autotrophic 
biomass accumulates in the platelet ice 
and in the lowest part of the pack ice, the 
bottom ice. 

During spring, the  bottom ice becomes porous and more intensely coloured due to the presence of  large amounts of autotrophic 
biomass, which is largely dominated by  benthic species, such as E. kjellmanii, Nitzschia stellata, Berkeleya sp., etc. 

In austral spring 1999, mesocosm experiments were conducted on the microalgal communities that colonise the platelet ice in order to assess the role of these communities in seeding planktonic blooms. Platelet-
ice microalgae were incubated  in two open tanks filled with 500 l of filtered seawater and exposed to 65 % and 10 % of the incident PAR, respectively, over 20 days.

Entomoneis kjellmanii did not grow in either light 
condition whereas Nitzschia stellata grew at 10% 
of the incident light.
Fragilariopsis cylindrus, a common species in 
marginal ice zones, increased sharply after only 
one day of incubation. The photoadaptation
process was slower in other pelagic diatoms, 
such as F. curta, and Chaetoceros spp. 
dominated in nutrient-depleted conditions.

A compositional shift was 
observed in the tank 
assemblages, with a 
marked decrease of benthic 
species and an increase of 
pelagic species, which were 
responsible for the 
exponential growth. 

Concluding remarks

Benthic species, dominating the bottom ice communities,  showed
poor   adaptation even at relatively low irradiances and, presumably, do 
not contribute  to planktonic blooms.

Pelagic species eventually adapted to high irradiance at species-
specific rates.

The first species to adapt to high irradiance levels was F. cyilindrus, a 
small (~ 5 µm) diatom that probably plays an important role at the 
onset of planktonic blooms in Terra Nova Bay.

Photo-adaptation was slower in the congeneric species F. curta, 
which commonly dominates late-spring blooms in Terra Nova Bay.
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