

Abstract

been discussed

The pelagic cephalopod para-larvae were part of the zooplankton samples that were collected during the five \mbox{NASEER} (North Arabian Sea Environ-

ment and Ecosystem Research) cruises, carried out between 1992 and 1994. Two cruises were during the northeast monsoon, two in the pre-

southwest and one during the southwest monsoon period. The eighteen biological sampling stations (except Station 4) were beyond the 200 m depth contour, covering the area near the Pakistan shelf, the deeper

The preliminary results showed that the three families, Enoploteuthidae, Caranchidae and the Ommastrephidae were the most dominant in the area. The highest number of positive hauls were reported during the northeast monsoon period (cruises N1 and N5). Although the

cephalopod para-larvae numbers were very low at some stations to estimate the abundance per m3, the highest number (118), mean 62.86

 (± 26.36) per 10 m3 were reported during N5 (northeast monsoon). The Ommastrephid (Sthenoteuthis oualenisis) was the most common of

all the species during all the five cruises, with the highest percentage

(-93%) during N5 (northeast monscon). The general size ranged between mantle length (ML) 10.74 mm to < 1.0 mm. The overall

abundance and distribution variability during the study period has also

PAKISTAN

Arabian sea, over the Murray Ridge and upto Oman (3 cruises).

Cephalopod para-larvae in the northwest Arabian Seaabundance and distribution in relation to monsoonal variability

Samina Kidwai and Shahid Amjad

National Institute of Oceanography, Karachi, Pakistan ST-47, Block-1, Clifton, Karachi, Pakistan, Email: niopk@cubexs.net.pk, skidwai@cyber.net.pk

Introduction

The Arabian sea is located at the extreme northwest of the Indian Ocean, and experiences two monsoon regimes. The southwest (summer) monsoon begins from June and extends upto September and northeast (winter) monsoon begins from November and ends around February, during this period there is a seasonal reversal of atmospheric and oceanic circulation (7,8).

The present study was part of the North Arabian Sea Environment and Ecosystem Research (NASEER) that covered an area of the Arabian sea off the Pakistan coast and some part off Oman. The temperature and salinity from the water surface recorded during the NASEER showed spatial and temporal variations (Figure 2). Preliminary information on the zooplankton from the NASEER has been published (1, 2), more studies continue.

The para-larvae of squid were indeed an interesting component of the zooplankton samples from the NASEER. This study demonstrates the preliminary information on the distribution patterns and abundance of squid para-larvae in the upper surface layer of Arabian sea during the different times of the year.

Material and Methods

The zooplankton samples were from the northwest Arabian sea The samples were taken at different monsoon periods (Table 1). All these stations were located beyond the 200 m depth contour. There were eighteen biological stations, out of which five were 24-hour stations (Figure 1). The zooplankton samples were collected by 10 minute horizontal tows taken from the surface where were in the surface water layer (0-5 meters) using a Bongo net. Details of biomass estimations, and preliminary information of dominant taxanomic groups are discussed earlier (1 a & b, 2).

The numeric abundance (N 10m-3) were estimated (1), and since cephalopod para-larvae abundance was very low, the entire sample was sorted to obtain all the cephalopod para-larvae that were present in each sample, and reported as numbers per haul (N haul-1), and these were used in the distribution plots (Figure 3 & 4). Preliminary identifications (P1, D1-3) were possible from literature available (3. 4, 5). Size estimates were made using an Olympus microscope and micrometer

Data Analysis

One-way ANOVA All groups (pooled) · Abundance (N haul-1) during different monsoon periods Sorted for day-night variation (pooled) <u>family:</u> Ommastrephidae para-larvae Abundance (N haul-1) during different monsoon periods Size variation from different monsoon periods

Distribution Coefficient (CD)

All groups (pooled)

CD= S2/Y, where S = variance and Y= mean (3, 6)

Distribution plots- SURFER 7 All groups pooled (N haul-1) (Figure 3) family Ommastrephidae (N haul-1) (Figure 4)

Cruise Number	Monsoon period	
NASEER 1 – N1	January 1992 Northeast	
NASEER 2 – N2	August 1992 Southwest	
NASEER 3 – N3	March 1993 pre-southwest	
NASEER 4 – N4	May 1994 pre-southwest	
NASEER 5 – N5	December 1994 Northeast	

e 2. Temperature and salinity at the surface layer during ER, a= N1, b=N2, c= N3, d=N4, e=N5 (Table 1).

Results

61

Figure 1. Cruise track of NASEER.

62

() -1-

63

65

Table 2 Number of nauls showing presence (+)-absence (-) or
squid para-larvae	

Cruise	N1	N 2	N3	N4	N5
Number					
+ hauls	11	4	10	8	14
- hauls	10	12	7	9	4

Number	Iotai	Mean	deviation (±)	Maximum	MINIMUM
N1	87 (189)	4.81(62.86)	3.36 (27.22)	12(94)	1 (47)
N2	17(*)	2.89	2.14	7	1
N3	109(204)	9.11(51.08)	17.22 (7.86)	63(63)	1(47)
N4	56(330)	4.67(55.01)	8.29 (19.25)	31(94)	1(47)
N5	249(566)	13.12(62.86)	40.24 (26.36)	179(118)	1(47)

Cruise Number	Number of day hauls		Number of night hauls		1
	+	-	+	-	р
N1	6	9	10	5	0
N2	3	13	3	8	N
N3	3	12	9	5	of
N4	6	7	6	5	ni
N5	2	6	10	2	pe

squid para-larvae between day and samples at any of the monsoon eriods except during N5

(note: the highest (N haul-1) reported at 24 hour stations)

Figure 3. Abundance (N haul-1) and distribution of all groups of cephalopod para-larvae during NASEER, a=N1, b=N2, c=N3, d=N4, e=N5.

 \Rightarrow distribution - "highly patchy" in all the five monsoon periods

⇒ No statistically significant difference at 0.05 level at the surface layer, between different monsoon periods of the NASEER

Cruise	Ommastrephidae	Others
Number		
N1	69.99	30.01
N2	35.29	64.71
N3	33.02	66.98
N4	78.57	21.43
NE	02.17	4 0 2

37.1

36.87

Table 3. Numbers per haul of squid para-larvae (in parenthesis - n to estimate

numbers per 10	m3) $*$ = too few	with no squid	with no squid para		
		Cruise	Nun		
Maximum	Minimum	Number	of d		

nwest			NASEE
rtheast			- THE
er 10 m3) * = too few	Table 4. Nur += hauls w with no squi	nber of day ar ith squid para d para-larvae	nd night h -larvae - =
	Cruise	Number	Numbe

few	+= hauls w with no squi	ith squ d para	uid para I-larvae	-larvae	- = hau	ls
	Cruise Number	Nun of d hau	nber ay Is	Numb night hauls	per of	Ų
		+	-	+	-	Difforon
	N14		0	10	_	Differen

nce in Day-Night presence at surface o difference at 0.05 level in the numbers

nauls

	59	63
	Fiai	iri
	NAS	F
	11/10	
Table 4. Number of day and r	nigh vae	t I

ruise umber	Total	Mean	Standard deviation (±)
1	87 (189)	4.81(62.86)	3.36 (27.22)
2	17(*)	2.89	2.14
3	109(204)	9.11(51.08)	17.22 (7.86)
4	56(330)	4.67(55.01)	8.29 (19.25)
5	240(566)	13 12(62 86)	40.24 (26.36

Table 6. Mantle size (ML- mm) of overall squid para-larvae during NASEER

Cruise Number	Mean Mantle size (mm)	Standard deviation (±)	Maximum size	Minimum size
N1	2.310	0.788	4.60	0.680
N2	2.965	1.077	5.00	1.60
N3	2.250	1.223	5.20	0.864
N4	1.636	0.470	2.80	0.954
N5	2.818	1.686	10.74	0.810

Size distribution \Rightarrow

Statistically significant difference at 0.05 level, between family Ommastrephidae para-larvae and other families, during the pre-SW cruises (N3 and N4). There was statistically significant difference (P£0.05) in the mantle size of family Ommastrephidae para-larvae from different monsoon periods during the NASEER.

Figure 5. Size estimates of family Ommastrephidae during NASEER

Conclusions

- The overall abundance of the cephalopod para-larvae at the surface layer remain more or less same during all the monsoon periods.
- There is generally no difference from day and night in the overall abundance at the surface waters.
- The overall distribution is highly patchy in all the monsoon periods.
- The family Ommastrephidae were the generally most dominant cephalopod in the area, their abundance was more or less same in all monsoon periods, their distribution was highly patchy.
- The size varied from seasons, the smallest observed during the northeast monsoon (N1 & N5), indicating perhaps main spawning time
- More and confirmed results to come

Main references

Main Feferences
a. Kitwai, S. Amjad, S. (2000a) Marine Biology, 136: 561-571
1b. Kitwai, S. & Amjad, S. (2000b) Technical Report, NIO October 2000
2-Kidwai, S. A. Amjad, S. (2001b) Technical Report, NIO October 2000
2-Kidwai, S. A. Amjad, S. (2001b) Technical Report, NIO October 2000
2-Biology, 471-471
4- Steveney, M.J. et al., (1992). Lancal and juvenile caphalopod Fisheries
Biology, 471-471
4- Steveney, M.J. et al., (1992). Lancal and juvenile caphalopods:
a manual for identification. Smithonaina Contr. 2006. 151:1-582.
5- Chun, C. (1975). The Caphalopoda, translated from German, Sci res.
Yudiduai 1989. Vol. 18.
6. Sokal, R. & Rohif, F.J. (1981). Biometry.
7. Hastrermär, S. & Lamb, P.J. (1980). J. Phy Oceano. 10:694-708.
8. Pickard, G.L. (1963). Desriptive Physical Oceanography

Acknowledments

The NASEER was funded by US-ONR Grant No. N00014-86-G-0230. The first author was funded by the International JGOFS to attend the JGOFS Open Science Conference 2003. The authors thank Prof. U. Platkowski, Kilel-Germany, Prof. Shanco Smith RSMAS. Miami, USA, and the Smithsonian for the literature used in this study. A very special thanks to Mr. Mohsin Tabrez for all his support, especially for the SURFER plots and general layout, preparation of the poster.