Thymidine and Leucine Incorporation
Samples from the upper 200 m were collected during hydrocases
with a trace-metal-free rosette (Moss Landing) and processed immediately
following collection. Short-term incorporation assays followed procedures
described in Ducklow et al. (1992a). Duplicate 30 ml samples were
amended with methyl-H-thymidine (New England Nuclear, sp. act.
>75 Ci mmol
; 10 nM final concl.) and incubated at or near
in situ water temperatures in screwtop polycarbonate centrifuge tubes
in chilled water bath incubators. Following incubation periods of
ca. 1--3 h, the incubation was terminated with the addition of 0.5 %
formalin. To measure nonspecific incorporation, these samples were
filtered onto Sartorius cellulose nitrate membranes (0.22 µm pore
size, extracted by rinsing the filters over a vacuum three times with
ice-cold 5 % trichloroacetic acid (TCA) and three times with 80 % ethanol,
as suggested in Wicks and Robarts (1988). To measure incorporation into
DNA only, separate parallel samples were extracted in 0.25 n NaOH (final
conc.) and chilled on ice. These samples were stored on ice for up to 48
hours, then neutralized with ice-cold 100 % TCA (final conc. 20 %), and
filtered onto 22 mm dia. 0.2 µm cellulose nitrate membrane filters.
Finally the samples wre extracted on the filter holders by rinsing three
times each with 50 % chloroform-phenol (a 1:1 c/c mixture of liquified
phenol and chloroform) and with 80 % ethanol to purify the labelled DNA
(Wicks and Robarts, 1987). Zero-time controls were subtracted to correct
for adsorption and other abiotic effects. The cellulose nitrate filters
were packed tightly into 7 ml glass scintillation vials and dissolved in
1.0 ml of ethyl acetate, prior to addition of Ultima Gold biodegradeable
scintillation cocktail (Packard). Samples were counted aboard ship on the T.G. Thompson scintillation counter.
H-leucine incorporation was estimated in parallel incubations of
samples inoculated with 0.5 nM
H-leuchine (New England Nuclear, sp.
act. 153 Ci mmol
) and 10 nM unlabeled leucine (Kirchman et al., 1985), for a final leucine concentration (hot plus cold) of 10.5 nM 30 ml leucine samples were filtered onto replicate 22 mm dia. 0.22 µm cellulose nitrate filters and extracted with ice cold 5 % TCA
and ethanol as described above.
Bacterial Abundance and Biomass
Samples for estimation of bacterial abundance and biovolume
(20--100 ml, depending on depth) were preserved with particle-free 1.0 %
glutaraldehyde then filtered within 24 h onto black Poretics polycarbonate
filters (0.2 µm pore size), stained with acridine orange (Hobbie
et al., 1977) and mounted in Cargille Type A immersion oil on slides
and stored frozen until examination. Samples for microscopy were not
replicated. All samples were enumerated using a Zeiss Axiophot microscope
(final magnification 1613 x). Biovolume was estimated using the
386-based Zeiss VIDAS VIDEOPLAN Image Analysis system which acquired
images from a Dage-MTI Nuvicon video camera connected to the Axiophot
microscope through a Dage gen-II image intensifier. In our configuration
this imaging system projects 0.2 µm spheres onto an area of
approximately 17 pixels. We measure length and width (D and D
), perimeter and area of approximately 300 cells in each sample. The measurements are calibrated by measuring fluorescent spheres of
various sizes (Polysciences Corp.). Biovolumes (V) are calculated using
an algorithm (Baldwin and Bankston, 1988) which derives linear dimensions
from the image analyzer's estimates of cellular perimeter, (C) and area, (A):
V = 4/3(To estimate bacterial production rates from the incorporation results, conversion factors and derived empirically, loosely following the experimental design first proposed by Kirchman et al. (1982), and described more fully in Ducklow et al. (1992b). Cell volume data can be converted to biomass using various factors centering around 20 fg C 0.1 µmr
) + 2
h, where (1) _______ (C ±
C
-4
A ) r (cell radius) = ______________ and (2) 2
A -
r
h (height) = ________ (3) 2r
NB: These protocols closely follow methods used in JGOFS NABE by the same PI's and are quite similar to protocols in use in BATS.
Literature Cited